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Figure 1. Given an interior design image (style image) and a 3D scene captured by video or multi-view images, ReStyle3D first transfers
the appearance based on semantic correspondences to a single view, then lifts the stylization to multiple viewpoints using 3D-aware style
lifting, achieving multi-view consistent appearance transfer with fine-grained details. Project page: restyle3d.github.io.

Abstract

We introduce ReStyle3D, a novel framework for scene-
level appearance transfer from a single style image to a
real-world scene represented by multiple views. The method
combines explicit semantic correspondences with multi-
view consistency to achieve precise and coherent styliza-
tion. Unlike conventional stylization methods that apply a
reference style globally, ReStyle3D uses open-vocabulary
segmentation to establish dense, instance-level correspon-
dences between the style and real-world images. This en-
sures that each object is stylized with semantically matched
textures. ReStyle3D first transfers the style to a single view
using a training-free semantic-attention mechanism in a dif-
fusion model. It then lifts the stylization to additional views
via a learned warp-and-refine network guided by monoc-
ular depth and pixel-wise correspondences. Experiments
show that ReStyle3D consistently outperforms prior meth-
ods in structure preservation, perceptual style similarity,
and multi-view coherence. User studies further validate
its ability to produce photo-realistic, semantically faithful
results. Our code, pretrained models, and dataset will be
publicly released, to support new applications in interior
design, virtual staging, and 3D-consistent stylization.

1. Introduction

Generative diffusion models have recently spurred signifi-
cant advances in image stylization and broader generative
applications, enabling the seamless synthesis or editing of
images with remarkable visual fidelity. While existing im-
age stylization approaches [7, 30] often excel at transferring
well-known artistic styles (e.g., Van Gogh paintings) onto
photographs, they fall short when it comes to practical and
realistic style applications, such as virtual staging or pro-
fessional interior decoration, where transferring the style of
one image (style image) to another (source image) entails
transferring the individual appearance of objects (Fig. 1).

These methods tend to treat the style image globally, ig-
noring the semantic correspondence between individual ob-
jects or regions in the images. This coarsely aligned styl-
ization not only misrepresents object appearances but also
fails to adapt fine-grained textures to semantically matched
regions (e.g., transferring couch textures only to couches).
This is crucial for real-world use cases where style is de-
fined by the unique characteristics (e.g., color, material,
shape) of design elements (i.e., furniture, decor, lighting,
and accessories) that give it its signature look [44]. Another
line of work pursues semantic correspondence for transfer-
ring object appearances [5, 70]. While these methods show
promise in aligning single objects or small regions via deep
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feature matching, they typically operate at low spatial reso-
lutions (often 64×64) and therefore struggle to handle com-
plex scenes with strong perspective and multiple object in-
stances. Extending them to scene-level stylization remains
a challenging problem due to both semantic and geometric
complexity.

Moreover, when a scene is represented by multiple im-
ages (e.g., for larger coverage), ensuring multi-view con-
sistency in scene-level appearance transfer further compli-
cates the task. Existing multi-view image editing meth-
ods [10, 16, 35, 45] commonly require known camera poses
and an existing 3D scene representation (e.g., a neural ra-
diance field [39] or 3D Gaussian splatting [28]), which
needs a dense set of input views and considerable com-
pute time. These methods struggle with sparse or casually
captured views, and their specialized 3D pipelines hinder
plug-and-play use. A pixel-space approach preserving ge-
ometric cues without heavy 3D modeling is preferable but
remains under explored. We propose ReStyle3D, a novel
framework for scene-level appearance transfer that cobines
semantic correspondence and multi-view consistency, ad-
dressing limitations of 2D stylization and 3D-based editing
methods. Our key insight is that the inherent but implicit
semantic correspondences from pretrained diffusion mod-
els or vision transformers (e.g., StableDiffusion [49] and
DINO [4, 42]) are insufficient for fine-grained, scene-level
appearance transfer, especially when different objects or
viewpoints are involved. We tackle this by explicitly match-
ing open-vocabulary panoptic segmentation predictions be-
tween the style and source images, while ensuring that un-
matched parts of the scene still receive a global style har-
monization. This open-vocabulary labeling (with no prede-
fined semantic categories) helps us robustly align semanti-
cally corresponding regions even in cluttered indoor scenes.
By integrating these explicit correspondences into the at-
tention mechanism of a diffusion process, we achieve more
accurate and flexible stylization of multi-object scenes.

To further ensure 3D awareness and view-to-view con-
sistency, we adopt a two-stage pipeline. First, we achieve
training-free semantic appearance transfer in a single view
by injecting our correspondence-informed attention into a
pretrained diffusion model. Second, a warp-and-refine dif-
fusion network that efficiently propagates the stylized ap-
pearance to additional views in an auto-regressive manner,
guided by monocular depth and pixel-level optical flows.
Our method does not require explicit pose or 3D modeling,
and we show that the final stylized frames are fully com-
patible with off-the-shelf 3D reconstruction tools, enabling
complete 3D visualizations and consistent multi-view styl-
ization with minimal overhead. In summary, our contribu-
tions are as follows:
• We introduce SceneTransfer, a new task of transferring

multi-object appearance from a single style image to a

3D scene captured in multi-view images.
• We propose ReStyle3D, a two-stage pipeline that (i)

adapts a pretrained diffusion model with semantic atten-
tion for instance-level stylization, and (ii) trains a warp-
and-refine novel-view synthesis module to propagate the
style across all views, maintaining global consistency.

• We create the SceneTransfer benchmark with 25 inte-
rior design images and 31 indoor scenes (243 style-scene
pairs) from different categories (e.g. bedroom, living
room, and kitchen). Our results show strong improve-
ments in structure preservation, style fidelity, and cross-
view coherence.

2. Related Work
Image Stylization aims to transfer artistic styles to im-
ages while preserving structural content. Early CNN-based
methods [11, 17, 24] laid the groundwork by capturing style
and content representations. With the advent of diffusion
models [23, 49], recent approaches leverage pretrained ar-
chitectures and textual guidance for high-quality styliza-
tion [7, 14, 30, 31, 59, 65, 73]. InST [73] employs textual
inversion to encode styles in dedicated text embeddings,
achieving flexible transfer. StyleDiffusion [31] further re-
fines style-content separation through a CLIP-based dis-
entanglement loss applied during fine-tuning. StyleID [7]
adapts self-attention in pretrained diffusion models to in-
corporate artistic styles without additional training. While
these methods produce compelling results, they focus on
overall style transfer without explicitly modeling semantic
correspondences. In contrast, we attempt to inject explicit
semantic matching in stylization, thereby enabling precise
style transfer according to semantically matching regions.

Semantic Correspondence. Foundational works and re-
cent innovations have shaped the evolution of semantic
correspondence. SIFT-Flow [33] pioneered dense image
alignment with handcrafted SIFT descriptors [37]. Self-
supervised vision transformers like DINO [4] and DINO-
V2 [8, 42] improved feature representation for semantic
matching without labeled data [56, 57]. Recent methods,
such as [19, 70], DIFT [53], cross-image-attention [1]
and [18], integrate diffusion models with these transform-
ers, achieving superior zero-shot correspondence. Tech-
niques like Deep Functional Maps [5] further refine cor-
respondences by enforcing global structural consistency,
demonstrating the potential of advanced representations in
addressing correspondence challenges. The development of
these techniques enables the extraction of semantic corre-
spondences using intermediate representations.

Attention-based Control in Diffusion Models. The at-
tention modules in pretrained diffusion models are essential
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in controlling the generated content, allowing various image
editing tasks through attention mask manipulation. Prompt-
to-Prompt [20] pioneered text-based local editing by manip-
ulating cross-attention between text prompts and image re-
gions. Similarly, Plug-and-play [58] leverages the original
image’s spatial features and self-attention maps to preserve
spatial layout while generating text-guided edited images.
Epstein et al. [12] introduced Diffusion Self-Guidance, a
zero-shot approach that leverages internal representations
for fine-grained control over object attributes. While these
methods focus on text-to-image attention control, recent
works like Generative Rendering [3] explore cross-image
attention by injecting 4D correspondences from meshes into
attention for stylized video generation. In contrast, we pro-
pose a direct image-to-image semantic attention mechanism
that transfers appearances across all semantic categories si-
multaneously through explicit correspondence masks, en-
abling efficient and accurate scene-level stylization without
text prompts or 3D priors.

Diffusion-based Novel-View Synthesis of 3D scenes
typically requires inferring and synthesizing new regions
that are either unobserved or occluded in the original view-
point. A paradigm in prior work [29, 32, 47, 62] is the warp-
and-refine approach: estimate a depth map from the input
image, warp the image to the desired viewpoint, and then fill
in occluded or missing areas through a learned refinement
stage. More recent research [26, 48, 68] avoids explicit
depth-based warping by directly training generative mod-
els that handle view synthesis in a single feed-forward pass.
Another line of work [2, 6, 9, 40, 43, 50–52, 54, 55, 69] inte-
grates diffusion models such as StableDiffusion [49], mak-
ing it possible to extrapolate plausible new views that are far
from the input image for in-the-wild contents. ReconX [34]
and ViewCrafter [69] both harness powerful video diffusion
models combined with coarse 3D structure guidance to mit-
igate sparse-view ambiguities, achieving improved 3D con-
sistency for novel-view synthesis. Motivated by recent suc-
cess in the warp-and-refine paradigm [50], we adopt a sim-
ilar strategy but with a focus on style lifting, incorporating
historical frames through adaptive blending to consistently
propagate our style transfers across multiple views.

3. ReStyle3D

We present ReStyle3D, a framework for fine-grained ap-
pearance transfer from a style image Istyle ∈ RH×W×3, to
a 3D scene captured by unposed multi-view images or video
Xsrc := {Iisrc ∈ RH×W×3}Ni=1. Specifically, ReStyle3D
aims to transfer the appearance of each region in Istyle to its
semantically corresponding region in Xsrc, while maintain-
ing multi-view consistency across all images. We assume
spatial overlap between two consecutive frames in Xsrc.
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Figure 2. Semantic Appearance Transfer. The style and source
images are first noised back to step T using DDPM inversion [25].
During the generation of the stylized output, the extended self-
attention layer transfers style information from the style to the out-
put latent. This process is further guided by a semantic matching
mask, which allows for precise control.

3.1. Preliminaries

Diffusion models progressively add noise to an image I0
sampled from a data distribution pdata(I), transforming it
into Gaussian noise IT over T steps, following a variance
schedule {αt}Tt=1:

p( It | I0 ) = N ( It;
√
αt I0, 1− αtI ), (1)

where It represents the noisy image at timestep t. The re-
verse process is performed by a denoising model ϵθ(·) that
gradually removes noise from It to obtain cleaner It−1.
Here θ is the learnable parameters of the denoising model.
During training, the denoising model is trained to remove
noise following the objective function [23]:

L = EI0,t∼U(T ),ϵ∼N (0,I)||ϵ̂θ − ϵ||22, (2)

where ϵ̂θ = ϵ̂θ(It, t, c), and c is an optional input condi-
tion such as text, image mask, or depth information. At
inference stage, a clean image I := I0 is reconstructed
from a randomly sampled Gaussian noise IT ∼ N (0, I)
through an iterative noise-removal process. The cornerstone
of modern image-based diffusion models is the latent dif-
fusion model [49] (LDM), where the diffusion process is
brought to the latent space [13] of a variational autoencoder
(VAE). This approach is significantly more efficient com-
pared to working directly in the pixel space.

Attention layers are fundamental building blocks in
LDM. Given an intermediate feature map F ∈ RL×dh ,
where L denotes the feature length and dh represents the
feature dimension, the attention layer captures the interac-
tions between all pairs of features through query-key-value
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operations:

ϕ = softmax
(
Q′ ·K ′T
√
dh

)
· V ′

Q′ = Q ·Wq, K ′ = K ·Wk, V ′ = V ·Wv,

(3)

where ϕ is the updated feature map, Q′,K ′, and V ′ are lin-
early projected representations of the inputs via Wq , Wk,
and Wv , respectively. In self-attention, the key, query, and
value originate from the same feature map, enabling con-
text exchange within the same domain. For cross attention,
the key and value come from a different source, facilitating
information exchange across domains. In ReStyle3D, we
tailor the self-attention layers specifically for semantic ap-
pearance transfer and keep the cross-attention unchanged.

3.2. Appearance Transfer via Semantic Matching
To transfer the appearance of Istyle to Isrc, prior attempts
also employing diffusion models [1, 5, 70] have primar-
ily focused on single objects, and struggle with scene-level
transfer involving multiple instances. Our key observa-
tion is that the implicit semantic correspondences in foun-
dation models [42, 49] are insufficient for more complex
multi-instance semantic matching. To address this limita-
tion, ReStyle3D explicitly establishes and leverages seman-
tic correspondences throughout the transfer process.

Open-vocabulary Semantic Matching. We leverage the
open-vocabulary panoptic segmentation model ODISE [63]
for semantic matching. For a given input image, ODISE
generates segmentation maps M ∈ {1, . . . , C}H×W , as-
signing each pixel to one of C semantic categories. These
maps enable semantic correspondences between the style
and source images (detailed below). By matching open-
vocabulary semantic predictions, ReStyle3D is not limited
by predefined semantic categories in a scene. The corre-
spondences are injected into the diffusion process to guide
appearance transfer between matched regions.

Injecting Semantic Correspondences in Self-attention.
ReStyle3D enables training-free style transfer by extend-
ing the self-attention layer of a pretrained diffusion model
(Fig. 2). This approach injects style information from Istyle
into Isrc while preserving its structure. Specifically, we
first encode both the style and source images into the la-
tent space of Stable Diffusion [49], producing zstyle0 and
zsrc0 . These latent representations are then inverted to Gaus-
sian noise, zstyleT and zsrcT , using edit-friendly DDPM inver-
sion [25]. To enhance structural preservation and mitigate
LDM’s over-saturation artifacts, we incorporate monocular
depth estimates [64] of the input images through a depth-
conditioned ControlNet [71] during the inversion process.
The stylized image latent is then initialized as zoutT = zsrcT .

Next, we transfer the style from zstyleT to zoutT by de-
noising them along parallel paths [1]. At each de-noising
step t, we extract style features (Kstyle, Vstyle) and query
features Qout from individual self-attention layers. The
semantic-guided attention for the output feature ϕout is
computed by combining the attention features with the at-
tention mask M as follows:

ϕout = softmax

(
Qout ·KT

style√
dh

⊙M

)
· Vstyle, (4)

where ⊙ denotes element-wise multiplication and ϕout ∈
Rd2×dh is passed to the next layer after self-attention.

To obtain the attention mask M ∈ Rd2×d2

, we flatten
and bilinearly downsample the semantic masks Mstyle and
Msrc to match the resolution of attention feature maps,
which is d× d. The attention mask is defined as M(i, j) =
1 if the i-th region in the source and the j-th region in
the style image share the same semantic class; otherwise,
M(i, j) = 0. This formulation ensures that each region in
the output image samples its appearance solely from seman-
tically corresponding regions in the style image. For exam-
ple, a chair in the source image is only cross-attended to
its counterpart in the style image, inheriting its appearance.
If multiple instances in the style image share the same se-
mantic class, attention is distributed across them based on
sampling weights determined by softmax attention scores.
This mechanism naturally extends to support user-specified
correspondences. Regions without semantic matches attend
to the entire style image to preserve global harmony. Al-
though semantic attention effectively transfers appearance,
it may compromise the realism and structure of the stylized
output, requiring further refinement.

Guidance and Refinement. We draw inspiration from [1,
22] and incorporate classifier-free guidance (CFG) com-
bined with semantic and depth-conditioned generation. At
each denoising step t, we compute three noise predictions:
ϵt, ϵdt and ϵst . Here, ϵst represents the predicted noise from
the semantic attention path, ϵdt is obtained from the depth-
conditioned ControlNet [71], and ϵt is the unconditional
noise prediction. The final noise prediction is then calcu-
lated as follows:

ϵ̂t = (1− α)ϵt + α(λsϵ
s
t + λdϵ

d
t ), (5)

where λs and λd are the respective guidance weights (λs +
λd = 1) for semantic and depth guidance. (1 − α) is the
classifier-free guidance scale, which balances conditional
and unconditional predictions, improving image realism.

To enhance image quality, we employ a two-stage refine-
ment process. First, we upscale the initial stylized image
from 512×512 to 1024×1024 resolution. Then, following
SDEdit [38], we add high-frequency noise to this upscaled
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Figure 3. Appearance Transfer Multi-view Inconsistency.
When stylizing each view separately, we observe inconsistencies
(red arrows) due to high variance in generative modeling.
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Figure 4. Multi-view Style Lifting. Stereo correspondences are
extracted from the original image pair (Iisrc, I

j
src) and used to

warp the stylized image Îi to the second image, Ijw. To address
missing pixels from warping, we train a warp-and-refine model to
complete the stylized image Îj . This model is applied across mul-
tiple views within our auto-regressive framework.

image and denoise it for 100 steps with SDXL [46]. This
refinement process enhances local details while maintain-
ing the overall style, producing our final output Îsrc.

3.3. Multi-view Consistent Appearance Transfer
Although our semantic attention module effectively trans-
fers appearance for a single view, independently applying it
to each view may cause inconsistent artifacts (see Fig. 3).
Therefore, we develop an approach to transfer the appear-
ance from the stylized image Îisrc to all remaining views
while maintaining multi-view consistency.

Flow-guided Style Warping. Given a pair of source im-
ages (Iisrc, I

j
src), we first leverage a stereo matching method

DUSt3R [60] to extract the dense point correspondence and
the camera intrinsics. Using these, the optical flow Wi→j ∈
RH×W×2 is calculated by projecting the pointmaps of i-th
image to the j-th image. Next, given the optical flow and the
stylized i-th image Îisrc, we employ softmax splatting [41]
to obtain the initial stylized image Îjw and its warping mask

Mj
w, which indicates missing pixels in the j-th frame after

forward warping.

Learning View-to-View Style Transfer. Given the
source image Ijsrc and its initial stylized version Îjw, we
train a 2-view warp-and-refine model ϵ̂θ = ϵ̂θ(zt, t, c)
to generate a complete and consistent stylized image fol-
lowing conditions c: the initial stylized image, the in-
painting mask, and the monocular depth map Dj of the
source image Ijsrc (Fig. 4). The final condition c =

concat(z(Î
j
w), z(M

j
w), z(D

j)), z∗ denotes individual latent
representations. To harness the power of a pretrained dif-
fusion model [46], like Marigold [27], we modify the in-
put channels of its initial convolution layer to accommo-
date additional conditions and zero-initializing the addi-
tional weights. Following Eq. (2), we train the model us-
ing quadruplets of the warped and incomplete image, depth
map, mask, and the clean and complete image. The model
simultaneously learns to complete missing pixels and refine
all pixels to address warping artifacts.

Auto-regressive Multi-view Stylization. We propose an
auto-regressive approach to extend two-view stylization to
handle multiple views or even videos, ensuring global co-
herence across the scene (Fig. 4). Stylizing the j-th frame
using only the previous frame (j − 1) can lead to incon-
sistencies with earlier frames while warping all historical
frames could produce blurry outputs. Instead, we warp the
stylized frame (j − 1) along with two randomly selected
historical frames. In overlapping regions, where multiple
pixels are warped to the same location, we adopt an expo-
nential weighted averaging to blend pixels, prioritizing pix-
els from frame (j − 1). This adaptive weighting maintains
temporal consistency and preserves sharp details in the re-
sulting warped image Î1:j−1

w . Finally, our model refines the
output, producing a fully stylized frame.

4. Experiments
Implementation Details. We base our semantic attention
module on Stable Diffusion 1.5 [49] and the refinement
and 2-view warp-and-refine model on SDXL [46]. To train
our two-view warp-and-refine model (Sec. 3.3), we use 4
NVIDIA A100 40GB GPUs with an effective batch size of
256 for 20K iterations, using the AdamW optimizer [36]
with learning rate 10−4. We randomly drop out half of the
text prompt during training to make our model agnostic to
text conditions. The model is trained on a dataset with 57K
house tour images featuring 57 different houses/apartments.

4.1. Evaluation Setting
Dataset. Our SceneTransfer benchmark comprises 31 dis-
tinct indoor scenes captured as short video clips, totaling
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Table 1. Quantitative comparison of ReStyle3D and baseline methods on 2D appearance transfer. Our method achieves the best
overall performance for both structure preservation and percetual similarity, benefiting from its explicit semantic guidance and refinement.

Method Depth Metrics (Structure) Perceptual Similarity (Style) Avg. Rank
AbsRel↓ SqRel↓ δ1↑ DINO↑ CLIP↑ DreamSim↓

Cross-Image-Attn. [1] 22.47 7.944 5.78 0.553 0.709 0.414 4.8
IP-Adatper SDXL [66] 9.38 1.847 79.29 0.570 0.752 0.371 3.0
StyleID [7] 11.25 2.59 93.44 0.546 0.741 0.332 3.2

ReStyle3D (Ours w/o refinement) 11.30 2.65 89.11 0.586 0.778 0.319 2.5
ReStyle3D (Ours w/ refinement) 8.34 1.67 88.45 0.584 0.783 0.316 1.5

Source Image Style Image ReStyle3D (Ours) Cross-Image-Attn. IP-Adapter SDXL StyleID

Figure 5. Image appearance transfer results. Our method enables precise appearance transfer between semantically corresponding
elements, evidenced by the green rug and glass table (first row), textured cabinet (second row), and bedsheets (third row). Unlike baselines
that either apply global style transfer or fail to preserve structure, ReStyle3D maintains both semantic fidelity and structural integrity.

15,778 frames across multiple room categories, including
living rooms, kitchens, and bedrooms, all disjoint from our
training data. To evaluate stylization capabilities, we cu-
rated a set of 25 interior design reference images, enabling
243 unique style-scene combinations. Evaluation is per-
formed on 1,109 keyframes sampled from these clips. For
more details on data, please refer to the supplementary ma-
terial (Supp.).

Evaluation Metrics. We evaluate multiple different as-
pects of our pipeline. First, we assess the appearance
transfer performance using source images on two aspects:
structure preservation and style transfer quality. For struc-
ture preservation, we compare depth maps predicted by
DepthAnythingV2 [64] between stylized and original im-
ages using standard metrics: Absolute Relative Error (Ab-
sRel), δ1 accuracy, and Squared Relative Error (SqRel),

following established protocols [27, 64]. For style trans-
fer quality, we measure perceptual similarity between the
stylized output and the style image using DINOv2 [42],
CLIP, and DreamSim [15] scores. We evaluate this task
on the stylized source images of each scene. Next, we
evaluate our two-view lifting model (Sec. 3.3). We assess
its warp-and-refine quality using PSNR, SSIM [61], and
LPIPS [72] while also reporting FID [21] to quantify the re-
alism of generated frames under challenging viewpoint ex-
trapolation. We evaluate using pairs of the source images
per scene and their warped projections on the rest of the
frames in each scene—we exclude pairs without correspon-
dences. We do not use any stylization to train or evaluate
since there is no ground truth. To evaluate global consis-
tency, we leverage DUSt3R [60] to extract poses by align-
ing point maps from stylized sequences and compute cumu-
lative error curve (AUC) by comparing recovered camera
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poses against those from original images.

4.2. Results
Image Appearance Transfer. We compare with three
state-of-the-art methods on image-conditioned stylization
and appearance transfer: Cross Image Attention [1], IP-
Adapter [66], and StyleID [7]. For a fair comparison, we
add depth ControlNet [71] to SDXL IP-Adapter [66] and
use the style image as the image prompt. As shown in
Tab. 1, our method achieves superior performance on both
structure preservation and style transfer metrics. Notably,
our explicit semantic attention mechanism in the diffusion
UNet enhances the perceptual similarity between stylized
outputs and style images, as evidenced by better DINO,
CLIP, and DreamSim scores. The refinement step fur-
ther improves structure preservation, reducing AbsRel from
11.30 to 8.34 and SqRel from 2.65 to 1.67. Qualitative com-
parisons (Figs. 5 and 7) reveal the limitations of existing ap-
proaches. Cross Image Attention effectively captures style
textures but fails to maintain scene structure due to the lack
of semantic guidance. IP-Adapter SDXL preserves over-
all structure but struggles with local detail transfer, as it
compresses style information into a global feature vector.
Although StyleID achieves the second-best performance,
its results tend to preserve high-frequency details from the
source image while applying style changes more globally,
demonstrating limited capability in fine-grained appearance
transfer.

We conduct a user study with 27 participants who were
shown examples of a source and style image with outputs
from four methods. Participants selected the result that
best preserved the structure while faithfully transferring the
style. Out of 252 evaluations (Tab. 2), ReStyle3D was
the most preferred (42.4%), demonstrating its effectiveness
in balancing structure preservation and appearance transfer
under human perception.

Table 2. Image Appearance Transfer User Study. We show
user preference rates (%) for different methods, where participants
selected the result that best preserved the original scene structure
while closely matching the reference style. ReStyle3D achieves
the highest preference rate.

Method ReStyle3D (Ours) Cross Image Attn. IP-Adapter StyleID
Preferred Rate (%) 42.4 16.3 4.4 36.9

Two-view NVS. We compare our approach to: i) SDXL
inpainting model [46] with depth-conditioned Control-
Net [71], ii) GenWarp [50], an image-based diffusion model
for single view NVS, and iii) ViewCrafter [69], a video-
diffusion model for NVS. Note that the proposed task dif-
fers from traditional NVS as it leverages geometry informa-
tion from the novel view itself. We employ DUSt3R [60] to
extract the correspondences and provide the initial warped

Table 3. Results on two-view novel-view synthesis. ReStyle3D
achieves the highest scores on all metrics, indicating more accurate
view synthesis and visually pleasing outputs compared to existing
methods.

Method Res. PSNR↑ SSIM↑ LPIPS↓ FID↓
GenWarp [50]

5122

13.503 0.465 0.435 59.965
SDXL Inpainting [46] 16.228 0.535 0.389 89.502
ViewCrafter [69] 17.178 0.594 0.278 56.127
ReStyle3D (Ours) 18.614 0.677 0.246 34.138

GenWarp [50]

10242
13.491 0.565 0.440 60.540

SDXL Inpainting [46] 16.153 0.565 0.426 89.537
ViewCrafter [69] 17.137 0.652 0.317 57.898
ReStyle3D (Ours) 18.568 0.711 0.283 35.721

Table 4. Pose deviation from real-world estimates. We measure
the fraction of camera poses within certain rotation (at 5◦, 10◦,
15◦) and translation (at 1, cm, 2, cm, 5, cm) error thresholds, re-
porting area-under-curve (AUC) values. ReStyle3D achieves sig-
nificantly higher AUC in both, showing superior multi-view geo-
metric consistency vs. existing methods.

Method Rotation AUC↑ Translation AUC↑
@5◦ @10◦ @15◦ @1cm @2cm @5cm

GenWarp [50] 25.89 46.70 58.89 58.38 59.39 70.05
SDXL Inpainting [46] 34.52 52.79 66.50 61.42 65.99 74.11
ViewCrafter [69] 37.56 55.33 68.53 60.91 65.99 77.16
ReStyle3D (Ours) 52.79 69.54 79.70 66.50 77.66 83.25

image as input to all methods. ReStyle3D outperforms
across all metrics, achieving a superior reconstruction abil-
ity as evidenced by the best PSNR, SSIM, and LPIPS met-
rics (cf . Tab. 3, ). Additionally, it exhibits strong capability
in extending style to unseen regions, evidenced by the low-
est FID score (Fig. 8). Notably, the second best method
ViewCrafter [69], requires a predefined camera trajectory
as input to video diffusion and runs 10× slower than ours.

Multi-view Consistency Evaluation. We further eval-
uate the multi-view consistency of the stylized results
through a proxy task. Specifically, we input the original
and stylized images to DUSt3R [60] and estimate the cam-
era poses, separately. By evaluating the agreement with the
poses from the original images, we analyze whether the ge-
ometry is preserved in the stylized images. The results are
presented in Tab. 4. Enabled by our adaptive auto-regressive
approach, which effectively mitigates inconsistencies while
preserving image sharpness, our method significantly out-
performs the baselines on both rotation and translation met-
rics. Figs. 8 and 9 show multi-view transfer results, includ-
ing the 3D reconstruction of stylized outputs with estimated
camera poses, demonstrating both geometric and stylistic
consistency despite camera motion and multiple objects.

Ablation Study. In Tab. 5(a), we run ReStyle3D without
our guidance strategy and observe significant degradation in
structure preservation (AbsRel↑ from 8.34 to 16.72). In (b),
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Frame 1 Frame 2 Frame 3 3D Reconstruction

Figure 6. Results on Video/Multi-view Appearance Transfer of ReStyle3D. We show the style images, three frames stylized by
ReStyle3D, followed by a 3D reconstruction of these outputs using an off-the-shelf pipeline. Despite challenging camera motion and
multiple objects in the scene, our method preserves consistent geometry and seamlessly transfers the reference style across all frames.

Table 5. Ablation Study. We separately remove the guidance
strategy and the semantic attention module to evaluate their im-
pact on both structure preservation and style fidelity. Removing
either significantly degrades performance, highlighting the impor-
tance of both components in achieving robust scene geometry and
perceptually faithful stylization.

AbsRel↓ SqRel↓ δ1 ↑
Ours w/o guidance 16.72 4.36 67.46
Ours w/ guidance 8.34 1.67 88.45

(a) Ablation on Guidance

DINO↑ CLIP↑ DreamSim↓
Ours w/o Sem. Attn. 0.492 0.682 0.419
Ours w/ Sem. Attn. 0.584 0.783 0.316

(b) Ablation on Semantic Attention

removing semantic attention hurts performance on percep-
tual similarity w.r.t. style image, showing that both compo-
nents are crucial for semantic-accurate style transfer while
maintaining structural integrity.

5. Conclusion
We presented ReStyle3D, a framework for semantic appear-
ance transfer from a design image to multi-view scenes. Our
two-stage approach combines training-free semantic atten-
tion in diffusion models with a warp-and-refine network to
ensure geometric consistency across views. Experiments
and user studies on our SceneTransfer benchmark confirm
that ReStyle3D surpasses existing methods in semantic fi-
delity, structure preservation, and multi-view coherence. By
using open-vocabulary segmentation and off-the-shelf re-
construction models, ReStyle3D avoids assumptions about
scene semantics or geometry, making it suitable for real-
world interior design and virtual staging. While focused on
indoor scenes, its principles could apply to other domains.
Limitations and more implementation details are discussed
in the supplementary material.
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Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In
ICCV, 2021. 2

[5] Xinle Cheng, Congyue Deng, Adam Harley, Yixin Zhu, and
Leonidas Guibas. Zero-shot image feature consensus with
deep functional maps. In ECCV, 2024. 1, 2, 4

[6] Jaeyoung Chung, Suyoung Lee, Hyeongjin Nam, Jaerin Lee,
and Kyoung Mu Lee. Luciddreamer: Domain-free genera-
tion of 3d gaussian splatting scenes. In arXiv, 2023. 3

[7] Jiwoo Chung, Sangeek Hyun, and Jae-Pil Heo. Style injec-
tion in diffusion: A training-free approach for adapting large-
scale diffusion models for style transfer. In CVPR, 2024. 1,
2, 6, 7

[8] Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr
Bojanowski. Vision transformers need registers. In ICLR,
2024. 2

[9] Boyang Deng, Richard Tucker, Zhengqi Li, Leonidas
Guibas, Noah Snavely, and Gordon Wetzstein. Streetscapes:
Large-scale consistent street view generation using autore-
gressive video diffusion. In SIGGRAPH, 2024. 3

[10] Jiahua Dong and Yu-Xiong Wang. Vica-nerf: View-
consistency-aware 3d editing of neural radiance fields. In
NeurIPS, 2023. 2

[11] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex
Lamb, Martin Arjovsky, Olivier Mastropietro, and Aaron
Courville. Adversarially learned inference. In ICLR, 2017.
2

[12] Dave Epstein, Allan Jabri, Ben Poole, Alexei A. Efros, and
Aleksander Holynski. Diffusion self-guidance for control-
lable image generation. In NeurIPS, 2023. 3

[13] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming
transformers for high-resolution image synthesis. In CVPR,
2021. 3

[14] Martin Nicolas Everaert, Marco Bocchio, Sami Arpa, Sabine
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Source Image Style Image ReStyle3D (Ours) Cross-Image-Attn. IP-Adapter SDXL StyleID

Figure 7. Additional results on 2D appearance transfer. Each example shows the source image, the reference style image, and the
stylized outputs. While the baseline methods either disrupt scene structure or misalign local style details, ReStyle3D consistently preserves
geometric fidelity and correctly maps the reference appearance to each semantic region. Subtle details like furniture textures and decorative
elements are accurately adapted to match the style.

Input View GenWarp SDXL Inpainting Viewcrafter ReStyle3D (Ours) Reference View

Figure 8. Results on two-view NVS with warp-and-refine. Given a single input view and a target viewpoint, each method attempts to
synthesize the target frame by warping and refining the source image. ReStyle3D recovers more accurate geometry and fewer artifacts,
while also preserving finer scene details. By contrast, baseline methods struggle with consistent edge alignment and realism, showing
noticeable artifacts and incomplete regions.
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Frame 1 Frame 2 Frame 3 3D Reconstruction

Figure 9. Additional Results on Video/Multiview Appearance Transfer. We showcase three frames from a new indoor sequence stylized
by ReStyle3D, followed by a 3D reconstruction of these stylized images using an off-the-shelf algorithm. Despite dynamic viewpoint
changes and scene complexity, ReStyle3D consistently enforces semantic correspondences and preserves geometric integrity across all
frames, enabling high-quality multi-view edits for practical applications such as interior design or virtual staging.
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A. Qualitative Ablation Study

We further validate our design choices with additional qual-
itative results in Fig. 10, comparing frame selection strate-
gies for our warp-and-refine model. Warping only the last
frame can cause inconsistencies, e.g., the painting on the
wall appears and disappears due to occlusion and incor-
rect correspondence estimates and occlusions (Fig. 10 (a)).
Warping all past frames improves consistency but intro-
duces conflicts, as overlapping pixel projections in the same
location can result in smeared pixels and confuse the model
about whether to refine or preserve them(Fig. 10 (b)). Our
strategy can mitigate the disadvantages of both approaches,
yielding more coherent multi-view stylization (Fig. 10 (c)).

We also validate the need for monocular depth condition
to fully leverage two-view geometry in multi-view appear-
ance transfer. As the stereo estimate from DUSt3R [60]
implicitly contains geometry information, the additional
monocular depth condition could be deemed unnecessary.
To this end, we train a model without monocular depth esti-
mation (MDE) that is solely conditioned on warped images,
to ablate its effect. Fig. 11 shows that without MDE, the
model still effectively learns the task, but loses fidelity in
local details. With pixel-aligned MDE control, the model
corrects wrong projections from two-view geometry based
on the high-resolution depth map improving accuracy in ar-
eas like the door handle, chairs, and wine bottles.

B. Qualitative Video Results

We present additional results that demonstrate our method’s
versatility in handling diverse styles and scene contents.
Our supplemental video best illustrates this versatility,
showing how a single style image can transform multiple
indoor scenes into a cohesive appearance, as well as how
one scene can be re-imagined across various styles. The
video format particularly highlights our method’s ability to
maintain visual consistency across multiple viewpoints, a
key advantage that is difficult to convey through static im-
ages.

C. Data Curation

We curated the training data for our warp-and-refine model
using 57 hourly-long 2K house tour videos. We first ex-
tract keyframes from all the videos at every 10th frame
to get 57K sparse multi-view images. Then we divide the
keyframes into 10-image chunks to emulate different over-
lap ratios in real-world scenarios. In each window, we
use DUSt3R [60] to compute the dense stereo between the
first frame in the window and all the rest frames and get 9
warped images and their warping masks in each window.
We also use Depth Anything V2 [64] to extract the monoc-

ular depth for the 9th image in the window. Then each
training sample is generated as (warped image, monocular
depth, mask, and clean target image) and used for training.

We would like to note that both the warp-and-refine
training data and the SceneTransfer benchmark data are
derived from a collection of house tour videos, which are
part of a separate submission to another conference. These
videos will be made publicly available through that paper,
along with all relevant metadata (e.g., video IDs, start-end
timestamps) to enable full replication and encourage future
research and comparisons. The selection of this dataset was
intentional. Unlike existing indoor scene datasets [67? ],
which are typically designed for 3D reconstruction and fea-
ture imagery that remains close to surfaces and lacks spatial
context, our house tour videos were collected for real-estate
purposes. They offer stable, smooth trajectories with views
that are further from surfaces, making them more suitable
for stylization tasks.

The style images in the SceneTransfer benchmark were
manually collected from Pexels, which provides copyright-
free interior images.

D. Style Images and Segmentation
Fig 12 displays several style images from our SceneTrans-
fer benchmark alongside their open-vocabulary segmen-
tation overlays. Each row pairs a real indoor photo-
graph (kitchen, living room, or bedroom) with its cor-
responding color-coded semantic masks, as predicted by
ODISE [63]. The segmentation assigns each pixel to a se-
mantic category (e.g., “wall”, “sofa”, “cabinet”, “table”)1,
enabling instance-level alignment between the target scene
and the reference style images. In the ReStyle3D pipeline,
these masks form the basis for establishing precise semantic
correspondences. By ensuring that each object region in the
target image only “borrows” style cues from its from its cor-
responding instance in the reference image, our framework
preserves the scene layout while selectively transferring ap-
pearance. This capability is particularly valuable in multi-
object, complex scenes like the ones shown here, where var-
ious furniture and architectural elements must be stylized
coherently while maintaining their original spatial relation-
ships.

E. Limitations and Future Work
In this work we focused exclusively on indoor scenes for
interior design applications, without exploring other types
of scenes, such as outdoor or dynamic environments. While
our method effectively transfers appearances, it lacks strong
disentanglement between color, texture, and material prop-

1The open vocabulary method was queried with a list of common se-
mantic labels. In our experiments we used the semantic list of the ODISE
model.
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(a) Single (b) All (c) Ours

Figure 10. Comparison between different auto-regression strategies. The rows represent two non-sequential views used in multi-view
appearance transfer, while the columns represent different frame selection strategies. (a) Single warps only the previous view, failing to
preserve details like the painting on the wall present in the top image, as pixel information is lost. (b) All warps all past frames to the
current frame, improving consistency but introducing smearing effects, demonstrated by the red arrows (highlighted by red arrows) due
to overlapping pixel projections with large color value differences originating from lighting changes. (c) Ours, the proposed strategy in
ReStyle3D, achieves the most consistent and clean multi-view stylization.

Warped Input w/o MDE w/ MDE Ground Truth

Figure 11. Qualitative comparison between two different conditional models. We train a warp-and-refine model without the monocular
depth (MDE) condition. Without MDE supervision, the model struggles to correct local alignment issues (e.g., the door handle, wine
bottles, and chairs), resulting in noticeable geometric distortions and texture artifacts. In contrast, incorporating MDE enables the model
to leverage pixel-aligned depth cues and more faithfully reconstruct fine details, yielding sharper and more consistent multi-view results.

erties, and struggles with significant lighting changes. Fu-
ture work could address these limitations by improving the
transfer of appearances for smaller objects in the scene—

currently overlooked due to downsampling of semantic
masks— and developing finer control mechanism for ap-
pearance transfer, such as material or texture.
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Figure 12. Style Image Samples. We showcase exemplar images of various designs across various styles and types of rooms from our
SceneTransfer benchmark style image collection (top rows), paired with their open-vocabulary semantic segmentation masks (bottom
rows). These images span a variety of interior spaces–including kitchens, living rooms, and bedrooms–and illustrate the core challenge
of ReStyle3D: transferring the appearance of each semantically matched region (e.g., cabinets, couches, and beds) from a style image to
real-world 3D scenes. Our method leverages these semantic masks to ensure each object is stylized with the correct instance-level textures
while maintaining photo-realism and multi-view consistency.
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